P: ISSN NO.: 2394-0344 E: ISSN NO.: 2455-0817

Softly Z* Normal Spaces

Abstract

The aim of this paper is to introduce a new class of softly normal called soft Z^* -normality by using Z^* -open sets and obtained several properties of such a space. Moreover, we obtain some new characterizations and preservation theorems of soft Z^* -normality.

Keywords: π -closed, Z*-closed, α -closed sets, softly Z*-normal spaces. **Introduction**

In this paper, we introduced the new concept of softly Z*-normal by using Z*-open set due to Ali Mubarki [1] and obtained several properties of such a space. Recently, M. C. Sharma and Hamant Kumar [4] introduced a weaker version of normality called softly-normality and prove that soft-normality is a property, which is implied by quasi-normality and almost-normality and obtained several properties of such space. We prove that soft Z *-normality is a topological property and it is a hereditary property with respect to closed domain subspace. Moreover, we obtain some new characterizations and preservation theorems of softly Z*-normal spaces. Throughout this paper, $(X,\ \tau),\ (Y,\ \sigma)$ spaces always mean topological spaces $X,\ Y$ respectively on which no separation axioms are assumed unless explicitly stated.

2010 AMS Subject Classification

54D15

Preliminaries

Definition

A subset A of a topological space X is called,

- 1. α -closed [3] if $cl(int(cl(A))) \subseteq A$.
- 2. Z^* -closed [1] if $int(cl(A)) \cap cl(\delta-int(A)) \subseteq A$.
- 3. Regular closed [10]) if A = cl(int(A)).

The complement of α -closed (resp. Z^* -closed, regular closed) set is called α -open (resp. Z^* -open, regular open) set. The intersection of all Z^* -closed sets containing A is called the Z^* -closure of A and denoted Z^* -cl(A). The union of all Z^* -open subsets of X which are contained in A is called the Z^* -interior of A and denoted by Z^* -int(A). The finite union of regular open sets is said to be \square -open. The complement of a \square -open set is said to be \square -closed.

Definitions stated in preliminaries, we have the following diagram:

closed \Rightarrow α -closed \Rightarrow Z^* -closed

However the converses of the above are not true may be seen by the following examples.

Example

Let X = {a, b, c, d } and τ = { ϕ , {a}, {b}, {a, b},{a, b, c}, X}.Then the set A = {c} is α -closed set as well as Z*-closed set but not closed set in X .

Remark

Every regular open (resp. regular closed) set is π -open (resp. π -closed).

Softly Z*- Normal spaces

Definition

A topological space X is said to be Softly normal [4](softly Z^* -normal) if for any two disjoint closed subsets A and B of X, one of which is π -closed and other is regularly closed, there exist disjoint open(Z^* -open)

sets U and V of X such that $A \subseteq U$ and $B \subseteq V$.

Almost-normal [7] (almost Z*-normal [5])

If for every pair of disjoint sets A and B, one of which closed and other is regularly closed, there exist disjoint open (Z*- open) sets U and V of X such that $A \subset U$ and $B \subset V$.

Nidhi Sharma
Assistant Professor,
Deptt.of Mathematics,
N.I.E.T.
Greater Noida

Neeraj Kumar Tomar Assistant Professor, Deptt.of Mathematics, N.R.E.C. College, Khurja

RNI No.UPBIL/2016/67980

VOL-2* ISSUE-6* September- 2017 Remarking An Analisation

P: ISSN NO.: 2394-0344 E: ISSN NO.: 2455-0817

Quasi Normal [11] (quasi Z*-Normal [6])

If for any two disjoint π -closed subsets A and B of X, there exist disjoint open (Z*-open) sets U and V of X such that A \subset U and B \subset V.

π-Normal [2]

If for any two disjoint closed subsets A and B of X, one of which is π -closed, there exist disjoint open sets U and V of X such that A \subset U and B \subset V. **Mildly Normal [8,9]**

If for any two disjoint regularly closed subsets A and B of X, there exist disjoint open sets U and V of X such that $A \subset U$ and $B \subset V$.

By the definitions stated above, we have the following diagrams:

 $\begin{array}{c} \text{Quasi-normal} \implies \text{quasi Z*-normal} \implies \text{soft Z*-} \\ \text{normal} \implies \text{mildZ*-normal} \\ & \qquad \qquad \uparrow \end{array}$

$$\begin{array}{ccc} \text{normal} \implies \text{almost normal} \implies \\ & \text{softly normal} \implies \text{mildly normal} \\ & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow \end{array}$$

 Z^* -normal \Rightarrow almost Z^* -normal \Rightarrow

soft Z*-normal⇒mild Z*-normal

Where none of the implications is reversible as can be seen from the following examples:

Example

Let X = {a, b, c, d} and τ = { ϕ , {a}, {c}, {a, c}, {b, d}, {a, b, d}, {b, c, d}, X}. The pair of disjoint π -closed subsets of X are A = {a} and B = {c}. Also U = {a} and V = {b, c, d} are disjoint open sets such that A \subset U and B \subset V. Hence X is quasi-normal as well as quasi Z*-normal as well as softly Z*-normal because every open set is Z*-open set.

Example

Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then $A = \{b\}$ is closed and $B = \{a\}$ is regularly closed sets there exist disjoint open sets $U = \{b, c, d\}$ and $V = \{a\}$ of X such that $A \subset U$ and $B \subset V$. Hence X is almost normal as well as almost Z^* -normal as well as softly Z^* -normal because every open set is Z^* -open set.

Example

Let $X = \{a, b, c, d\}$ and $T = \{\phi, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. The pair of disjoint closed subsets of X are A = $\{a\}$ and B = $\{c\}$. Also U = $\{a, b\}$ and V = $\{c, d\}$.

d} are Z^* -open sets such that $A \subseteq U$ and $B \subseteq V$. Hence X is Z^* -normal but it is not normal.

Example

Let
$$X = \{a, b, c\}$$
 and $T = \{\phi, \{a\}, \{a, b\}, \{a, c\},$

X}. Then (X, τ) is almost -normal as well as almost Z*-normal, but it is not Z*-normal, since the pair of disjoint closed sets {b} and {c} have no disjoint Z*-open sets containing them. But it is not normal.

Example

Let X = {a, b, c, d} and τ = { ϕ , {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X}. Then X is Z*-normal.

Theorem

For a topological space X, the following are equivalent:

- a. X is softly Z*-normal.
- For every π-closed set A and every regularly open set B with A

 B, there
- c. exists a Z*-open set U such that $A \subset U \subset Z^*$ $cl(U) \subset B$.

For every regularly closed set A and every π -open set B with A \subset B, there exists a Z*-open set U such that A \subset U \subset Z*-cl(U) \subset B. d. For every pair consisting of disjoint sets A and B, one of which is π -closed and the other is regularly closed, there exist Z*-open sets U and V such that A \subset U, B \subset V and Z*-cl(U) \cap Z*-cl(V) = ϕ **Proof**

- (a) \Longrightarrow (b). Assume (a). Let A be any π -closed set and B be any regularly open set such that A \subset B. Then A \cap (X B) = ϕ where (X B) is regularly closed. Then there exist disjoint Z*-open sets U and V such that A \subset U and (X B) \subset V. Since U \cap V= ϕ , then Z*-cl(U) \cap V = ϕ . Thus Z*-cl(U) \subset (X V) \subset (X (X B)) = B. Therefore, A \subset U \subset Z*-cl(U) \subset B.
- (b) \Longrightarrow (c). Assume (b). Let A be any regularly closed set and B be any π -open set such that A \subset B. Then, $(X B) \subset (X A)$, where (X B) is π -closed and (X A) is regularly open. Thus by (b), there exists a Z^* -open set W such that $(X B) \subset W$ $\subset Z^*$ -cl(W) $\subset (X A)$. Thus A $\subset (X Z^*$ -cl(W)) $\subset (X W) \subset B$. So, we let $U = (X Z^*$ -cl(W)), which is Z^* -open and since $W \subset Z^*$ -cl(W), then $(X Z^*$ -cl(W) $\subset (X W)$. Thus $U \subset (X W)$, hence Z^* -cl(U) $\subset Z^*$ -cl(X W) = X W $\subset Z^*$ -cl(X W) $\subset Z^*$ -cl(X W) = X W $\subset Z^*$ -cl(X W) $\subset Z^*$ -cl(X W)
- (c) \Longrightarrow (d). Assume (c). Let A be any regular closed set and B be any π -closed set with A \cap B = ϕ . Then A \subset (X B), where (X B) is π -open. By (c), there exists a Z*-open set U such that A \subset U \subset Z*-cl(U) \subset (X B). Now, Z*-cl(U) is Z*-closed. Applying (c) again we get a Z*-open set W such that A \subset U \subset Z*-cl(U) \subset W \subset Z*-cl(W) \subset (X B). Let V = (X Z*-cl(W)), then V is Z*-open set and B \subset V. We

RNI No.UPBIL/2016/67980

P: ISSN NO.: 2394-0344 RNI No.UP E: ISSN NO.: 2455-0817

have $(X - Z^*\text{-cl}(W)) \subset (X - W)$, hence $V \subset (X - W)$, thus $Z^*\text{-cl}(V) \subset Z^*\text{-cl}(X - W) = (X - W)$. So, we have $Z^*\text{-cl}(U) \subset W$ and $Z^*\text{-cl}(V) \subset (X - W)$. Therefore $Z^*\text{-cl}(U) \cap Z^*\text{-cl}(V) = \phi$.

(d) \Rightarrow (a) is clear.

Theorem

For a topological space X, the following are equivalent:

- a. X is softly Z*-normal.
- b. For every pair of sets U and V, one of which is π-open and the other is regular open whose union is X, there exist Z*-closed sets G and H such that G ⊂ U, H ⊂ V and G ∪ H = X.
- c. For every π -closed set A and every regular open set B containing A, there is a Z*-open set V such that $A \subset V \subset Z^*$ -cl(V) $\subset B$.

Proof

(a) \Rightarrow (b). Let U be a π -open set and V be a regular open set in a softly Z*-normal space X such that U \cup V = X. Then (X - U) is π -closed set and (X - V) is regular closed set with (X - U) \cap (X - V) = ϕ . By soft Z*-normality of X, there exist disjoint Z*-open sets U₁ and V₁ such that X - U \subset U₁ and X - V \subset V₁. Let G = X - U₁ and H = X - V₁. Then G and H are Z*-closed sets such that G \subset U, H \subset V and G \cup H = X.

(b) \Rightarrow (c) and (c) \Rightarrow (a) are obvious.

Using Theorem 3.7, it is easy to show the following theorem, which is a Urysohn's Lemma version for soft Z*-normality. A proof can be established by a similar way of the normal case.

Theorem

A space X is softly Z^* -normal if and only if for every pair of disjoint closed sets A and B, one of which is π -closed and other is regularly closed, there exists a continuous function f on X into [0, 1], with its usual topology, such that $f(A) = \{0\}$ and $f(B) = \{1\}$.

It is easy to see that the inverse image of a regularly closed set under an open continuous function is regularly closed and the inverse image of a π -closed set under an open continuous function π -closed. We will use that in the next theorem.

Theorem

Let X is a softly Z*-normal space and f: X

→ Y is an open continuous injective function. Then f(X) is a softly Z*-normal space.

Proof

Let A be any π -closed subset in f(X) and let B be any regularly closed subset in f(X) such that $A \cap B = \phi$. Then $f^{-1}(A)$ is a π -closed set in X, which is disjoint from the regularly closed set $f^{-1}(B)$. Since X is softly Z^* -normal, there are two disjoint open sets U and V such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Since $f^{-1}(B) \subset V$.

one-one and open, result follows.

Corollary

Soft Z*-normality is a topological property.

VOL-2* ISSUE-6* September- 2017 Remarking An Analisation

Lemma

Let M be a closed domain subspace of a space X. If A is a Z^* -open set in X, then A \bigcap M is Z^* -open set in M.

Theorem

A closed domain subspace of a softly Z^* -normal is softly Z^* -normal.

Proof

Let M be a closed domain subspace of a softly Z*-normal space X. Let A and B be any disjoint closed sets in M such that A is regularly closed and B is $\pi\text{-closed}$. Then, A and B are disjoint closed sets in X such that A is regularly closed and B is $\pi\text{-closed}$ in X. By soft Z*-normality of X, there exist disjoint Z*-

open sets U and V of X such that A \subset U and B \subset V. By the Lemma 3.12, we have U \cap M and V \cap M are

disjoint Z^* -open sets in M such that $A \subset U \cap M$ and

 $B \subseteq V \cap M$. Hence, M is softly Z*-normal subspace. Since every closed and open (clopen) subset is a closed domain, then we have the following corollary. **Corollary**

Soft Z*-normality is a hereditary with respect to clopen subspaces.

Conclusion

In this paper, we have introduced weak form of normal space namely soft Z*-normality and established their relationships with some weak forms of normal spaces in topological spaces.

References

- Ali Mubarki, Z*-open sets and Z*-continuity in topological spaces, Internat. J. of Math. Archive, 3(1), 2012, 118 -125.
- 2. L. N. Kalantan, π-normal toplogical spaces, Filomat 22:1 (2008), 173-181.
- 3. O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- 4. M.C.Sharma and Hamant Kumar, Softly normal topological spaces accepted for publication in the Journal of Acta Ciencia Indica.
- M. C. Sharma and Poonam Sharma, Almost Z*normal spaces, J. Math. Sci. Vol.7(4), 2012,343-350
- M. C. Sharma and Poonam Sharma, Quasi Z*normal spaces, Acta Ciencia Indica, XXXIX M 2013 No.4, 437-442.
- 7. M. K. Singal and S. P. Arya, Almost normal and almost completely regular spaces, Glasnik Mathematicki Tom 5(25) 1(1970), 141-152
- B. M. K. Singal and A. R. Singal, Mildly normal spaces, Kyungpook Math. J., 13(1973), 27-31.
- E. V. Shchepin, Real functions and near normal spaces, Sibirskii Mat. Zhurnal, 13(1972), 1182-1196.
- 10. M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math.Soc. 41(1937), 374 481.
- 11. V. Zaitsev, On certain classes of topological spaces and their biocompactifications, Dokl. Akad. Nauk SSSR, 178(1968), 778-779.